Forecasting VaR using analytic higher moments for GARCH processes
نویسندگان
چکیده
a r t i c l e i n f o JEL classification: C53 G17 Keywords: GARCH Higher conditional moments Approximate predictive distributions Value-at-Risk S&P 500 Treasury bill rate Euro–US dollar exchange rate It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropriately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH model, such predictions have typically required time-consuming simulations of the aggregated returns distributions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish– Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial assets , for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.
منابع مشابه
A comparison of GARCH models for VaR estimation
In this paper the value at risk (VaR) forecasts are compared using three different GARCH models; ARCH(1), GARCH(1,1) and EGARCH(1,1). The implemented method is a one-day ahead out of sample forecast of the VaR. The forecasts are evaluated using the Kupiec test with a five percent significance level. The focus is on three different markets; commodities, equities and exchange rates. The goal of t...
متن کاملComparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملManaging extreme risk in some major stock markets: An extreme value approach
Article history: Received 10 May 2013 Received in revised form 2 September 2014 Accepted 2 September 2014 Available online 11 September 2014 The study investigates the relative performance of Value-at-Risk (VaR) models using daily share price index data from six different countries across Asia, Europe and the United States for a period of 10 years from January 01, 2000 toDecember 31, 2009. Them...
متن کامل